Imputed Empirical Likelihood for Varying Coefficient Models with Missing Covariates

نویسنده

  • Peixin Zhao
چکیده

The empirical likelihood-based inference for varying coefficient models with missing covariates is investigated. An imputed empirical likelihood ratio function for the coefficient functions is proposed, and it is shown that iis limiting distribution is standard chi-squared. Then the corresponding confidence intervals for the regression coefficients are constructed. Some simulations show that the proposed procedure can attenuate the effect of the missing data, and performs well for the finite sample.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model averaging estimation of generalized linear models with imputed covariates

We address the problem of estimating generalized linear models when some covariate values aremissing but imputations are available to fill-in the missing values. This situation generates a bias-precision tradeoff in the estimation of the model parameters. Extending the generalized missing-indicator method proposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a p...

متن کامل

Empirical likelihood inference in linear regression with nonignorable missing response

Parameter estimation for nonignorable nonresponse data is a challenging issue as the missing mechanism is unverified in practice and the parameters of response probabilities need to be estimated. This article aims at applying the empirical likelihood to construct the confidence intervals for the parameters of interest in linear regression models with nonignorable missing response data and the n...

متن کامل

مقایسه روش بیزی (Bayesian) و کلاسیک در برآرد پارامترهای مدل رگرسیون لجستیک با وجود مقادیر گمشده در متغیرهای کمکی

Background and Aim: Logistic regression is an analytic tool widely used in medical and epidemiologic research. In many studies, we face data sets in which some of the data are not recorded. A simple way to deal with such "missing data" is to simply ignore the subjects with missing observations, and perform the analysis on cases for which complete data are available. Materials and Methods: We c...

متن کامل

Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis

BACKGROUND Multiple imputation is a recommended method to handle missing data. For significance testing after multiple imputation, Rubin's Rules (RR) are easily applied to pool parameter estimates. In a logistic regression model, to consider whether a categorical covariate with more than two levels significantly contributes to the model, different methods are available. For example pooling chi-...

متن کامل

Handling Missing Covariates in Conditional Mixture Models Under Missing at Random Assumptions.

Mixture modeling is a popular method that accounts for unobserved population heterogeneity using multiple latent classes that differ in response patterns. Psychologists use conditional mixture models to incorporate covariates into between-class and/or within-class regressions. Although psychologists often have missing covariate data, conditional mixtures are currently fit with a conditional lik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013